5197com新浦京

通知公告
【学术报告】 Infinitely many homoclinic solutions of discrete locally sublinear Schr?dinger equations with unbounded potentials and general temporal frequencies
发布单位:5197com新浦京        浏览次数:10        发布时间:2021年10月28日

报告题目:Infinitely many homoclinic solutions of discrete locally sublinear Schr?dinger equations with unbounded potentials and general temporal frequencies

 

报告摘要:We consider a class of discrete nonlinear Schr?dinger equations in high dimensional lattices with locally sublinear terms, unbounded potentials and general temporal frequencies.  The arising problem confronts two main difficulties: one is that the nonlinear terms are local sublinear and the other is that the associated functional is indefinite. New techniques like cutoff methods and compact inclusions are employed to overcome the difficulties. This together with the critical point theory allows us to obtain infinitely many homoclinic solutions approaching zero under mild conditions. Furthermore, our results extend some related ones in the literature. This is a joint work with Dr. Genghong Lin.

 

报告时间:2021113日(周三)上午10:00-11:30

报告地点:线上,腾讯会议号:891581555

 

报告人简介:

周展,博士、二级教授、博士生导师,教育部长江学者和创新团队发展计划创新团队带头人,享受国务院政府特殊津贴专家,广州市优秀专家,中国数学会理事。现任广州大学应用数学研究中心执行主任。先后主持长江学者和创新团队发展计划2项、国家自然科学基金7项、教育部优秀青年教师资助计划、高等学校博士点基金等科研项目多项。近年来在《J. Differential Equations》、《Nonlinearity》、《Proc.Royal Soc. Edinburgh》和《中国科学》(英文版)等重要刊物发表高水平科研论文100多篇,先后获得广东省自然科学一等奖(第三)、湖南省科技进步一等奖(第五)、湖南省自然科学优秀论文一等奖、第五届秦元勋数学奖、广东省高等学校千百十人才培养工程第六批先进个人。





编辑:哈工大(威海)5197com新浦京

5197com新浦京-要玩就玩最好的hp5197